Monatshefte für Chemie 107, 1369-1378 (1976) © by Springer-Verlag 1976

Schwingungsberechnungen von dimeren und polymeren SbCl₅-Molekülen

Von

Wolfgang Brockner

Anorganisch-Chemisches Institut, Technische Universität Clausthal, Clausthal-Zellerfeld, Bundesrepublik Deutschland

und

Sven J. Cyvin

Institutt for Fysikalsk Kjemi, Universitetet i Trondheim, Norges Tekniske Høgskole, Trondheim, Norwegen

Mit 1 Abbildung

(Eingegangen am 8. Juni 1976)

Vibrational Calculations of Dimeric and Polymeric SbCl₅NbCl₅ Molecules

Normal coordinate analyses for a dimeric SbNbCl₁₀ molecule, the finite chains SbNbCl₁₁, Sb₂Nb₂Cl₂₁ and Sb₃Nb₃Cl₃₁ and the infinite chain (SbNbCl₁₀)_{∞} are performed. The final force constants of the SbNbCl₁₀ dimer are given along with the vibrational frequencies and their corresponding potential energy distributions. Symmetry coordinates for molecular vibrations are specified for finite chain (SbNbCl₁₀)_{∞} and the constructed force fields were used to calculate the vibrational frequencies.

Einleitung

Bei der Reaktion von Antimonpentachlorid mit Niobpentachlorid, also zweier vergleichbar starker Chloridionenakzeptoren, tritt Verbindungsbildung auf¹. Die Ramanspektren zeigen, daß keine ionischen, sondern kovalente Species entstehen, in denen Struktureinheiten vorliegen, worin sowohl die Sb- als auch die Nb-Atome oktaedrisch von Chloratomen umgeben sind. Zur Diskussion stehen somit gemischte SbNbCl₁₀-Dimere, die über zwei Chlorbrücken kantenverknüpft sind, und polymere Kettenstrukturen, in denen die oktaedrisch von Cl umgebenen und alternierend vorliegenden Metallatome über Ecken verbunden sind.

SbNbCl₁₀-Dimere

Sowohl im Niobpentachlorid² als auch im Antimonpentachlorid bei tiefen Temperaturen^{3, 4} liegen chlorverbrückte dimere Einheiten mit der Symmetrie C_{2h} (oder D_{2h}) vor. Der Ersatz eines Nb-Atoms in der Nb₂Cl₁₀-Struktureinheit durch ein Sb-Atom (oder eines Sb im Sb₂Cl₁₀ durch Nb) führt zu einem gemischten SbNbCl₁₀-Dimeren und hat eine Symmetrieerniedrigung nach C_{2v} zur Folge. Die Art und Anzahl der zu

Tabelle 1. Benutzte Molekularparameter des SbNbCl₁₀-Dimeren

	Sb	Nb	Atomgewichte
$\begin{array}{c c} \hline M & - \text{Cl}_{\text{axial}} & (\text{\AA}) \\ M & - \text{Cl}_{\text{aquat.}} & (\text{\AA}) \\ M & - \text{Cl}_{\text{Brücke}} & (\text{\AA}) \\ \lneq & M \text{Cl}_{\text{Brücke}} & M & (^{\circ}) \end{array}$	2,32 2,27 $2,55_5$ 101,3	$2,30_2 \\ 2,25 \\ 2,55_5 \\ 101,3$	Cl: 35,457 Nb: 92,91 Sb: 121,76

Tabelle 2. Korrelationen zwischen den Species in D_{2h} und C_{2v}

Species D _{2h}	Species C_{2v}
$\left[egin{array}{c} 6 \ \mathbf{A_g} \\ 5 \ \mathbf{B_{1u}} \end{array} \right]$	11 A ₁
$\begin{array}{c} 2 \mathbf{B_{1g}} \\ 2 \mathbf{A_u} \end{array}$	$4~{ m A}_2$
$\begin{array}{c} 3 \mathbf{B}_{2g} \\ 4 \mathbf{B}_{3u} \end{array}$	$7 \mathrm{B}_1$
$\begin{array}{c} 4 B_{3g} \\ 4 B_{3u} \end{array}$	$8 B_2$

erwartenden Normalschwingungen des dimeren SbNbCl₁₀ lassen sich mit Hilfe eines Korrelationsdiagrammes⁵ aus den Schwingungsanalysen des Nb₂Cl₁₀⁶ und des Sb₂Cl₁₀⁷ erhalten zu:

 $\Gamma_{vib} = 11 \ A_1 + 4 \ A_2 + 7 \ B_1 + 8 \ B_2,$

wobei alle Species sowohl infrarot- als auch ramanaktiv sind.

Zur Wiedergabe des Schwingungsverhaltens des SbNbCl₁₀-Moleküles wurde die *Wilson-GF*-Matrizen-Methode⁵ benutzt. Die für die Rechnung erforderlichen Strukturparameter des Nb₂Cl₁₀ entstammen der Kristallstrukturbestimmung von *Zalkin* und *Sands*², bei denen des Sb₂Cl₁₀ handelt es sich um abgeschätzte Werte nach⁷ (Tab. 1). Weiterhin wird in Rechnung gestellt, daß die axialen M—Cl-Bindungen senk-

Rasse	Schwing berechnet ^a	ungsfrequenz berechnet ^b	en (cm ⁻¹) beobachtet ¹	PED c
A_1	406	429	429	$0,57 \mathrm{S_1} + 0,18 \mathrm{S_7}$
	382	382		$0.26\mathrm{S}_1 + 0.56\mathrm{S}_7 + 0.15\mathrm{S}_9$
	350	350		$1,00~\mathrm{S}_2$
	350	340	340	1,00 S ₈
	321	310	310	$0,29\mathrm{S}_3+0,20\mathrm{S}_4+0,26\mathrm{S}_5$
	254	272	272	$0,86{ m S_9}+0,15{ m S_{10}}$
	184	175	175	0,43 S ₆
	171	171		$0,65~{ m S_{10}} + 0,27~{ m S_{11}}$
	142	141	140	$0,23~{ m S_{10}}+0,66~{ m S_{11}}$
	114	112	112	$0,21~{ m S_3}+0,74~{ m S_5}$
	63	50		$0,61\mathrm{S}_3+0,98\mathrm{S}_4+0,91\mathrm{S}_6$
A_2	198	193	193	$0,74~\mathrm{S}_2$
	138	144		$1,03$ S $_3$
	104	103, 5		$0,93~{ m S_1}+0,31~{ m S_2}$
	21	54		0,96 S ₄
B_1	411	405	405	$0,21{ m S_1}+0,75{ m S_4}$
	382	388		$0,75{ m S_1}+0,19{ m S_4}$
	202	202		$0,71~{ m S_6}+0,27~{ m S_7}$
	155	155		$0,93 S_5$
	134	134		0,93 S ₂
	91	92		$0,94~\mathrm{S}_3$
	4 0	4 1		$0,26{ m S_6}+0,68{ m S_7}$
B_2	384	384		$0,22{ m S_1}+0,61{ m S_5}$
	362	365	365	$0,66{ m S}_1+0,22{ m S}_5$
	230	230		0,85 S ₂
	225	225		$0.15\mathrm{S}_5 + 0.62\mathrm{S}_6 + 0.22\mathrm{S}_7$
	170	170		$0,34{ m S}_3+0,33{ m S}_4$
	120	125	125	0,92 S ₈
	71	78	78	$0,21~{ m S_6}+0,71~{ m S_7}$
	70	71		$0,76{ m S_3}+0,81{ m S_4}$

Tabelle 3.	Ber.	und	beob.	Frequenzen	(cm^{-1})	des	$SbNbCl_{10}$ -Moleküls	und
dessen Potentialenergieverteilung (PED)								

^a Frequenzwerte, die aus dem Eingangskraftfeld erhalten wurden.

^b Letztlich erhaltene Frequenzwerte.

cPED-Werte des letztlich erhaltenen Kraftfeldes, Terme unter 0,15wurden nicht mit aufgeführt.

recht auf der äquatorialen Ebene stehen und die Winkel $\operatorname{Cl}_{\operatorname{äquat}}$ -M-- $\operatorname{Cl}_{\operatorname{aquat}}$ 90° betragen. Die erforderlichen Symmetriekoordinaten sind die des M_2X_{10} -

Die erforderlichen Symmetriekoordinaten sind die des M_2X_{10} -Modells (D_{2h}), die bereits an anderer Stelle eingehend beschrieben wurden⁶. Bei der Aufstellung eines angenäherten Kraftfeldes in Form einer

W. Brockner und S. J. Cyvin:

			the second s				the second s			
A_1	2,38									
	0,00	2,56								
	-0,13	0,00	0,81							
	0,03	0,00 -	-0,10	0,19						
	0,00	0,00 -	-0,05	0,02	0,34					
	0,01	0,00	0,11	0,09 -	-0,02	0,26				
	0,09	0,00 -	-0,03	0,00	0,00 -	-0,01	2,08			
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	2,41		
	0,04	0,00	0,01	0,00	0,00	0,00 -	-0,07	0,00 1,27		
	0,01	0,00	0,00	0,00	0,00	0,01 -	-0,01	0,00 - 0,21	0,42	
	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00 - 0,03	0,01	0,36
A_2	0,10									
	0,03	0,14								
	0,00	0,00	0,15							
	0,00	0,00 -	-0,02	0,10						
B_1	1,84									
	0,01	0,10								
	-0,01	0,00	0,09							
	-0.05	0,00	0,00	1,93						
	0,00	0,00	0,00	0,02	0,13					
	0,00	0,00	0,00	0,00	0,00	0,12				
	0,00	0,00	0,00	0,00	0,00	0,00	0,03			
B_2	1,96									
	0,05	0,79								
	0,01	0,01	0,12							
	0,02 ~	-0,03	0,06	0,22						
	0,01	0,00	0,00	0,00	2,00					
	0,00	0,00	0,00	0,00	0,06	0,88				
	0,00	0,00	0,00	0,00 -	-0,01	0,01	0,13			
	0,00	0,00	0,00	0,00 -	0,01	0,00	0,00	0,25		

Tabelle 4. Letztlich erhaltene Symmetriekraftkonstanten (mdyn/Å) für das SbNbCl₁₀-Dimere

Diagonal-*F*-Matrix wurde die Bildung neuer Rassen gemäß Tab. 2 berücksichtigt und die jeweiligen Matrizen der D_{2h} -Species zu größeren der C_{2v} -Species erweitert. Als Eingangswerte zur Aufstellung eines Kraftfeldes wurden die geometrischen Mittelwerte der letztlich erhaltenen Kraftfelder des Nb₂Cl₁₀⁶ und des Sb₂Cl₁₀⁷ eingesetzt. Die hieraus erhaltenen Frequenzwerte sind in Tab. 3 (ber. ^a) den experimentell erhaltenen Werten gegenübergestellt. Die berechneten Schwingungsfrequenzen der Tab. 3 (ber. ^a) zeigen noch keine Übereinstimmung mit den experimentell erhaltenen Ramanfrequenzen¹. Hieraus wird gefolgert, daß sich die Chlorbrückenatome etwas näher beim Sb befinden. Eine Anpassung der berechneten Frequenzwerte an die beobachteten

Ramanfrequenzen führt zu dem in Tab. 4 dargestellten Kraftfeld und den in Tab. 3 (ber. ^b) aufgeführten Frequenzen. Desgleichen sind noch in Tab. 3 die Potentialenergieverteilungswerte (*PED*) mit aufgeführt.

Kettenstrukturen

Für eine unendliche Kettenstruktur mit alternierenden Sb- und Nb-Atomen, die über Chloratome eckenverknüpft sind, ist eine "eclipsed"oder eine "staggered"-Anordnung möglich. Die "staggered"-Anordnung, die sicherlich die energetisch günstigere ist, hat eine Symmetrie von C_{4v} . Die eine unendliche Kette aufbauenden Strukturelemente und deren Zwei- und Dreifaches, also SbNbCl₁₁, Sb₂Nb₂Cl₂₁ und Sb₃Nb₃Cl₃₁, wurden einer Schwingungsberechnung nach der *Wilson-GF*-Matrizen-Methode⁵ unterzogen.

Die hier betrachteten endlichen Kettenmoleküle haben alle C_{4v} -Symmetrie. Die Schwingungen der unendlichen Kette werden mit derselben Symmetrie interpretiert. Die jeweilige Schwingungsanalyse für die genannten Strukturausschnitte ergibt:

$SbNbCl_{11}$:	$\Gamma_{ m vib} = 8~{ m A}_1 + { m A}_2 + 3~{ m B}_1 + 3~{ m B}_2 + 9~{ m E},$
$\mathrm{Sb}_2\mathrm{Nb}_2\mathrm{Cl}_{21}$:	$\Gamma_{vib} = 16 A_1 + 3 A_2 + 6 B_1 + 6 B_2 + 19 E,$
$Sb_3Nb_3Cl_{31}$:	$\Gamma_{vib} = 24 A_1 + 5 A_2 + 9 B_1 + 9 B_2 + 29 E,$
$(SbNbCl_{10})_{\infty}$:	$\Gamma_{ m vib} = 7~{ m A}_1 + { m A}_2 + 3~{ m B}_1 + 3~{ m B}_2 + 7~{ m E},$

wobei wieder alle Species sowohl ultrarot- als auch ramanaktiv sind.

Die verwendeten Molekularmodelle sind in Abb. 1 a + b dargestellt, wobei in Abb. 1 a die allgemeine Anordnung der Atome in einem Strukturelement wiedergegeben ist, und in Abb. 1 b die Bezeichnung und Numerierung der Atome, der Gleichgewichtsabstände und Winkel zur Festlegung der Valenzkoordinaten aufgeführt sind. Die Symmetriekoordinaten der einzelnen Strukturelemente (SbNbCl₁₁, Sb₂Nb₂Cl₂₁ und Sb₃Nb₃Cl₃₁) wurden dann in Analogie zum M_2 Cl₁₀-Modell⁶ und unter Benutzung der Definitionen der Abb. 1 erhalten.

Es sind dies im einzelnen für die r-, β - und γ -Typ-Koordinaten:

$$\begin{array}{lll} {\rm A_1:} & r \left(1 \right) + r \left(2 \right) + r \left(3 \right) + r \left(4 \right) \\ {\rm B_1:} & r \left(1 \right) - r \left(2 \right) + r \left(3 \right) - r \left(4 \right) \\ {\rm E_a:} & r \left(1 \right) - r \left(3 \right) \\ {\rm E_b:} & r \left(2 \right) - r \left(4 \right) \end{array}$$

Für die s-, α - und δ -Typ-Koordinaten gilt:

Abb. 1. Molekularmodelle für die kettenförmigen Strukturbausteine SbNbCl₁₁, Sb₂Nb₂Cl₂₁ und Sb₃Nb₃Cl₃₁ in ,,staggered"-Anordnung mit der Symmetrie C_{4v}

Rasse	${\rm SbNbCl}_{11}$	$\mathrm{Sb_2Nb_2Cl_{21}}$	$\mathrm{Sb_3Nb_3Cl_{31}}$	$\left(\mathrm{SbNbCl}_{10}\right)_\infty$	PED a
A_1		344	346	348	
			340		
	333	331	331		$0,46\mathrm{S}_4+0,36\mathrm{S}_5$
		330	330		
	330		330	330	$1,00\mathrm{S}_2$
		330	330		
		322	322		
	322		322	322	$1,00S_{7}$
		322	322		
		200	315		
		309	301		
	267			294	$0.41\mathrm{S_{1}} + 0.26\mathrm{S_{8}}$
		259	258		-,
		248	249		
	237			227	0.25 S ₁ ± 0.53 S ₂
			215		0,=0 ×1 (0,00 ×8
		202	196		
		172	174		
	161		161	155	$0.20\mathrm{S_1} + 0.39\mathrm{S_2} + 0.19\mathrm{S_6}$
	101	152	152	100	3,10,51 3,00,5 3 3,10,50
	147	148	149		$0.30\mathrm{S}_2 + 0.57\mathrm{S}_4$
	~~··	80	83	84	
		00	77	01	
	65	66	66		$0.388_4 \pm 0.388_5$
	00	00	49		0,00.04 0,00.05
		38	26		
			20	0	
				Ũ	
Aa		57	60	62	
		0.	54	•-	
	4.4	4.4	44		1 00 5
	44	44	444		1,00.81
		24	01 10		
			10	0	
				0	
D					
B_1		330	330		
	222	000	330		
	330	330		330	$1,00\mathrm{S}_1$
			330		
		158	158	158	
			158	200	1.00 Sa
	155	155	155		1,00.03
	113	113	113	113	1.00 S ₂
		113	113		-,
			113		

Tabelle 5 (Fortsetzung)

Rasse	$SbNbCl_{11}$	$\mathrm{Sb}_2\mathrm{Nb}_2\mathrm{Cl}_{21}$	$\mathrm{Sb}_3\mathrm{Nb}_3\mathrm{Cl}_{31}$	$(\mathrm{SbNbCl}_{10})_{\infty}$	PEDa
B_2	200	322	322	322	1.00 %
	522	322	$322 \\ 322$		1,00.03
		158	158	470	
	155	155	158	158	1.00 8
	155	100	155		1,00.81
		112	112		
	112	112	112	112	$1,00\mathrm{S}_2$
			112		
Е			449		
15	448	449	449	449	0.95 S ₂
		448	448		0,00 02
		449	412	410	
		412	412	412	
	411	411	411		$0,96\mathrm{S}_7$
		183	184	185	
		100	181		0.440 × 0.490
	178	177	177		0,44 S ₄ + $0,43$ S ₆
		170	172	167	
	1.47	1 4 17	169		$0,54{ m S_1}+0,35{ m S_3}$
	147	147	14.7		$0.22 S_{\circ} \pm 0.64 S_{\circ}$
	144	140	129		$0,22.08 \pm 0,04.09$
		136	135		
		134	134	134	
	129	104	133	132	$0.33{ m S}_3+0.43{ m S}_8$
		127	126		
		122	124		
	117			113	$0,22\mathrm{S}_1+0,21\mathrm{S}_3+0,23\mathrm{S}_8+0,22\mathrm{S}_9$
		100	105		
		100	92		
	73	77	78		$0.37 S_4 \pm 0.38 S_2$
	10		66		0,01.04 0,00.08
		10	56	52	
	4.0	16	17	19	0.06.5
	12	Q	13		0,90 55
		9	0 1		
		*	2		
			-	0	

^a Werte unter 0,15 wurden nicht aufgeführt.

Die Torsionskoordinaten sind normalisierte Summen von jeweils acht individuellen Torsionen, so daß

$$egin{array}{ll} au_0 = au \left(2, 6, 12, 10
ight) + au \left(2, 6, 12, 9
ight) + au \left(3, 6, 12, 11
ight) + au \left(3, 6, 12, 10
ight) + \ au \left(4, 6, 12, 8
ight) + au \left(4, 6, 12, 11
ight) + au \left(5, 6, 12, 9
ight) + au \left(5, 6, 12, 8
ight) . \end{array}$$

Für jede Brücke wurden zwei lineare Deformationen (φ) definiert, die so orientiert sind, daß sie in die E_a- bzw. E_b-Species fallen.

Die benutzten Strukturparameter sind dieselben wie für das dimere SbNbCl₁₀-Molekül (Tab. 1), also Sb--Cl_{endst.} = 2,32 Å, Nb--Cl_{endst.} = 2,30₂ Å und Sb--Cl_{verbr.} = Nb--Cl_{verbr.} = 2,55₅ Å.

Angenäherte Kraftfelder der genannten Strukturausschnitte wurden derart aufgestellt, daß Zahlenwerte der Valenzkraftkonstanten aus früheren Rechnungen für Sb_2Cl_{10} ⁷ und Nb_2Cl_{10} ⁶ abgeschätzt wurden. Numerische Werte des Diagonal-Kraftfeldes (mdyn/Å), das auf den Valenzkoordinaten einschließlich der Redundantbedingungen basiert, waren

$$\begin{split} f_r = 2,28 \, ; \, f_s = 2,16 \, ; \, f_d = f_t = 0,9 \, ; \, f_\alpha = f_\beta = f_\gamma = f_\delta = 0,12 \, ; \\ f_\phi = 0,005 \, \, \text{und} \, \, f_\tau = 0,01. \end{split}$$

In Tab. 5 sind die letztlich berechneten Frequenzen der einzelnen Strukturausschnitte und die PED-Werte für SbNbCl₁₁ aufgeführt. Die Frequenzwerte der unendlichen Kette wurden mit Hilfe der *GF*-Matrizen-Methode, wie sie beispielsweise von *Piseri* und *Zerbi⁸* auf polymere Ketten angewandt wurde, berechnet.

Ein Vergleich der Symmetriekraftkonstanten des gemischten Dimeren mit denen der Strukturausschnitte der unendlichen Kette zeigt, daß keine signifikanten Unterschiede bestehen. Damit läßt sich zusammenfassend feststellen, daß die durchgeführten Schwingungsberechnungen keine Entscheidung zwischen dimeren und polymeren Strukturen für den hier diskutierten Fall erlauben. Erschwerend ist außerdem noch bei diesem speziellen Beispiel, daß keine Polarisationsdaten erhältlich waren, da keine Einkristalle erhalten werden konnten und auch IR-Messungen keine Klärung bringen können.

Literatur

- ¹ W. Bues, F. Demiray und W. Brockner, Spectrochim. Acta, im Druck.
- ² A. Zalkin und D. E. Sands, Acta Cryst. [London] 11, 615 (1958).
- ³ W. Bues, F. Demiray und W. Brockner, Spectrochim. Acta **30** A, 1709 (1974).
- ⁴ R. Heimburger und M. J. F. Leroy, Spectrochim. Acta 31 A, 653 (1975).
- ⁵ E. B. Wilson, J. C. Decius und P. C. Cross, Molecular Vibrations. New York: McGraw-Hill. 1955.

- ⁶ S.J. Cyvin, H. Hovdan und W. Brockner, J. Inorg. Nucl. Chem. 37, 1905 (1975).
- ⁷ W. Brockner, S. J. Cyvin und H. Hovdan, Inorg. Nucl. Chem. Letters 11, 171 (1975).
- ⁸ L. Piseri und G. Zerbi, J. Chem. Phys. 48, 3561 (1968).

Korrespondenz und Sonderdrucke: Dr. W. Brockner Anorganisch-Chemisches Institut Technische Universität Clausthal Paul-Ernst-Straße 4 D-3392 Clausthal-Zellerfeld Bundesrepublik Deutschland